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An Overview of Integrated Flight-Propulsion Controls Flight Research
on the NASA F-15 Research Airplane

Frank W. Burcham

Donald L. Gatlin

James F. Stewart

NASA Dryden Flight Research Center
Edwards, CA

Abstract

The NASA Dryden Flight Research Center has been conducting

integrated flight-propulsion control flight research using the NASA F-
15 airplane for the past 12 years. The research began with the digital
electronic engine control (DEEC) project, followed by the F100 Engine
Model Derivative (EMD). HIDEC (Highly Integrated Digital
Electronic Control) became the umbrella name for a series of

experiments including: the Advanced Digital Engine Controls System
(ADECS), a twin jet acoustics flight experiment, self-repairing flight

control system (SRFCS), performance-seeking control (PSC), and

propulsion controlled aircraft (PCA). The upcoming F-15 project is
ACTIVE (Advanced Control Technology for Integrated Vehicles) This

paper provides a brief summary of these activities and provides
background for the PCA and PSC papers, and includes a bibliography
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Abstract

The NASA Dryden Flight Research Center has been conducting integrated

flight-propulsion control flight research using the NASA F-15 airplane for

the past 12 years. The research began with the digital electronic engine

control (DEEC) project, followed by the F100 Engine Model Derivative
(EMD). HIDEC (Highly Integrated Digital Electronic Control) became the

umbrella name for a series of experiments including: the Advanced Digital

Engine Controls System (ADECS), a twin jet acoustics flight experiment,

self-repairing flight control system (SRFCS), performance-seeking control

(PSC), and propulsion controlled aircraft (PCA). The upcoming F-15

project is ACTIVE (Advanced Control Technology for Integrated Vehicles)
This paper provides a brief summary of these activities and provides

background for the PCA and PSC papers, and includes a bibliography of

all papers and reports from the NASA F-15 project.
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NASA F-15 Research Airplane

The NASA F-15 research airplane (USAF S/N 71-0287) was originally the 8th

pre-production F-15 in the USAF test program. It, along with F-15 #2, (S/N 71-

0281) came to Dryden in 1976, and was involved in a series of research programs,

including flying qualities, buffet, and was the carrier airplane for the 10 deg cone

flight experiment, ref 1. In 1980, propulsion experiments were begun on F-15 #8
and in 1985, it received NASA tail number 835.

The NASA F-15 is a single place air-superiority fighter airplane with excellent

transonic maneuverability and a maximum Mach number of 2.5. The high-

mounted low aspect ratio wing has a 45 deg leading edge sweep and conical

camber. Reference wing area is 608 sq. ft. There are twin vertical tails and large

all-moving horizontal stabilators. The F-15 propulsion system consists of

variable-geometry horizontal ramp inlets on the forward fuselage each feeding

afterburning turbofan engines located in the aft fuselage.

The NASA F-15 zero fuel weight is approximately 30,000 lb, and fuel capacity is

11,600 lb. It is equippped with a HUD video camera, and a data system that

records digital and analog parameters on an on-board tape recorder, and also

telemeters this data to the ground.

NASA F-15 Research Airplane
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Propulsion System of the NASA F-15

The propulsion system of the F-15 is a highly integrated design consisting of

two horizontal ramp inlets each feeding afterburning turbofan engines located

in the aft fuselage.

As shown below, the inlets are mounted on the forward fuselage and are of

the variable geometry external compression type. The first ramp is pivoted

near the cowl lip and provides a variable capture capability to reduce spill

drag as angle-of-attack increases. The second and third ramp and diffuser
ramp are linked to provide proper compression at supersonic speeds. A

bypass door is located on the upper inlet surface for proper airflow matching

at supersonic speeds. A digital air inlet control system is provided to position
the variable geometry.

The ducts, which are approximately seven diameters long, provide air to Pratt
and Whitney F100 afterburning turbofan engines. These engines are low

bypass ratio (approximately 0.5) and have a high thrust-to-weigh-ratio of

approximately 8. For most tests, these engines were controlled by digital

electronic engine control (DEEC) systems.

NASA F-15 Propulsion Sytem
F100 afterburning
turbofan engines
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F-15 Inlet

The F-15 variable geometry two-dimensional, external compression

horizontal ramp inlet system is designed to provide high recovery, low

distortion, and low spillage drag over the F-15 flight envelope. The variable

first ramp, or cowl, rotates around a pivot located near the lower cowl lip to

provide variable capture, and prevent excess inlet spillage drag at high angles

of attack. The variable 2nd, 3rd, and diffuser ramps are linked to provide

efficient compression at supersonic speeds. Boundary layer bleed is provided

to improve recovery, distortion, and stability, using porous surfaces on the
ramps, and the sideplates; and at the throat by a flush slot. A bypass door is

provided to improve performance and provide airflow matching at Mach
numbers above 1.6.

A digital control system positions the cowl, bypass and ramps as a

function of local Mach number, local angle of attack, total temperature, and

throat total and static pressure. The geometry is positioned by hydraulic
actuators; if hydraulic pressure should be lost, the cowl and ramps drift to the

full-up (emergency) position. In case of a malfunction, the pilot may also

select the emergency position with a cockpit switch. At subsonic speeds, the
ramps are fully up and the cowl schedules as a function of angle of attack. At

supersonic speeds, the ramps extend primarily as a function of Mach number.

F-15 Inlet
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FIO0 engine

The F100 engine, shown below, is a low-bypass ratio, twin-spool,
augmented turbofan engine. The three-stage fan is driven by a two-stage,

low-pressure turbine. The 10-stage, high-pressure compressor is driven by

a two-stage cooled turbine. The engine incorporates variable geometry

(shown in red); compressor inlet variable vanes (CIVV) and 4 stages of rear

compressor variable vanes (RCVV) to achieve high performance over a

wide range of power settings; a compressor bleed is used only for starting.
Continuously variable thrust augmentation is provided by a mixed flow

augmentor and a variable area convergent-divergent balanced-beam

nozzle. For the DEEC tests, an F100(3) engine, (P&W S/N- 680063) was

used. This engine was later modified to the PWl128 configuration. For all

PSC and PCA testing, F100 Engine Model Derivative (EMD) engines were

used. These engines had a company designation of PWl128, and were
development engines for the F100-PW-229 engines. The PWl128 was
derived from the F100-PW-220, and features an increased airflow 248 lb/sec

fan, single-crystal blades and vanes in the high pressure turbine, a 16
segment augmentor, and an improved DEEC.

Cutaway view of the F100 engine
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_F \ v- Combustor
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Digital Electronic Engine Control (DEEC)

The first full authority production-like digital engine control system flown was the P&W

DEEC. It controls the major controlled variables on the engine, and replaces standard F100

engine control system. The DEEC is engine-mounted, and fuel-cooled, and consists of a

single-channel digital controller with selective input-output redundancy, and a simple

hydromechanical secondary engine control (SEC)

The DEEC system is functionally illustrated below. It receives inputs from the

airframe through the power lever angle (PLA) and Mach number (M). Engine inputs are

received from pressure sensors; fan inlet static pressure, (PS2), burner pressure, (PB), and

turbine discharge total pressure, (PT6); temperature sensors, fan inlet total temperature,

(TT2), and fan turbine inlet temperature, (FTIT), fan rotor speed sensors (N1) and core rotor

speed sensors, (N2). It also receives feedbacks from the controlled variables through position

feedback transducers indicating variable vane (CIVV and RCVV) positions, metering valve

positions for gas-generator fuel flow (WFGG), augmentor fuel flow(WFAB), augrnentor

segment-sequence valve position, and exhaust nozzle position (AJ). The input information is

processed by the DEEC computer to schedule the variable vanes (CIVV and RCVV), position

the compressor start bleeds, control WFGG and WFAB, position the augmentor segment-

sequence valve, and control the exhaust nozzle area. This logic provides linear thrust with

PLA, rapid and stable throttle response, protection from fan and compressor stalls, and keeps

the engine within its operating limits over the full flight envelope. Closed loop control of

engine pressure ratio (EPR) is provided to eliminate the need for trimming. (K_LOR CODE_
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Integrated Control Features of the NASA F-15

The F-15 HIDEC airplane configuration has evolved over the years and is well-

suited for integrated controls flight experiments. The features, shown below, include

the F100 EMD engines with DEECs, the digital electronic flight control system

(DEFCS), the digital inlet control computers, and an interface to allow these systems

to communicate. Initially, control laws were hosted in the DEFCS, this configuration

is shown on next page. Later, the general-purpose computer was added, and hosted

the control laws for more complex integrated control algorithms, For the last tests,

the vehicle management system computer replaced the DEFCS, and hosted the

digital flight control system. The cockpit interfaces included the navigation control

panel for inputs and the HUD for displays.

The digital flight control system, and the DEEC included backup dissimilar

mechanical controllers so that the digital system software was not flight-safety

critical, thus simplifying the software verification and validation process, and

allowing research effort to be concentrated on control law research.

F-15 HIDEC Integrated Control Features
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HIDEC System Architecture

The HIDEC system architecture is shown below, as it was arranged for the

ADECS research with the inlet included. A key avionics box added was the
interface unit that allowed the DEECs to communicate with the other F-15

systems and the Digital Electronic Flight Control System (DEFCS) that had

excess capacity for research control laws. The various avionics units

communicated with each other via H009 and 1553 digital data buses. Digital

inputs were received from the digital flight control system, the inertial

navigation set, the air data computer, the digital engine controls, commands

were sent to the DEECs and inlets during ADECS operation. Later, the

general purpose computer was added to accommodate more complex control

laws programmed in FORTRAN.
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Advanced Engine Control System (ADECS)

As part of the HIDEC pDgram, an advanced engine control system (ADECS)
mode was incorporated on the F-15 airplane. McDonnell Douglas, USAF, and Pratt and
Whitney assisted NASA in developing and testing ADECS. In ADECS, shown below,
airframe and engine information is used to allow the engine to operate at higher
performance levels at times when the inlet distortion is low and the full engine stall

margin is not required. The ADECS mode increased thrust levels as shown in the fan
map by increasing EPR at constant airflow (EPR uptrim). Fuel flow reductions could
also be obtained by holding thrust constant as EPR was increased. In essence, ADECS
traded unneeded stall margin for thrust. Schedules of EPR uptrim as a function of

engine conditions, angle-of-attack, sideslip, and pilot's stick position were stored in the
on-board research computer and the uptrims were computed and sent to the DEECs 4

times per second.
In the flight evaluation, the ADECS system was evaluated on the F100 EMD

engines on the F-15. Significant performance improvements were demonstrated.
Thrust improvements and constant-thrust fuel flow reductions were determined, and

compared to predictions. The ability of the ADECS to accommodate rapid aircraft
maneuvers and throttle transients was also demonstrated. Intentional stalls were also

conducted to validate the stability audit procedures used to develop the ADECS logic.
Typical results for an altitude of 30,000 ft. showed increases of 8 to 10 percent in

thrust at intermediate power. Fuel flow reductions of 7 to 17 percent were obtained at
maximum thrust with the PLA reduced to hold thrust constant. These engine

performance improvements resulted in airplane performance improvements (rate of
climb, specific excess power) of 10 to 25 percent.

Stall margin could also be traded for reduced temperature, resulting in extended
engine life (EEL). EEL was accomplished by increasing EPR and reducing airflow
along a constant thrust line. Temperature reductions up to 80 deg F were achieved.

Advanced Engine Control System (ADECS)

835

,41 F-15 H/DEC m.

Active stall margin control logic

I _ Optrim as a

EPR I £ _' function of

I _ tlig htdata

Airflow

Fan stall margin is modulated in

real time as a function of flight
control and engine parameters

rflow, EPR

AEPR

11



Twin-Jet Acoustic Interactions

During the ADECS project, NASA Langley requested that Dryden join

with them in an acoustics research program to investigate twin jet

acoustic interactions. The F-15 and B-1 installations, with close-spaced

engines, had both experienced cracked outer nozzle flaps, whereas
similar engines running in a single-engine installation in the F-16 did

not crack. Dryden installed about 25 high frequency microphones,

pressure transducers, and strain gages on the nozzle flaps and

interfairing areas. The photo below shows F100 EMD engine P085 on

the left and P063 both with the instrumented external flaps installed in

the F-15. The HIDEC ADECS system provided an added capability for

this test. Langley's desire to match nozzle pressure ratios closely at the

same power setting was satisfied by the ability of the ADECS system to
increase EPR on one engine until it matched the other. Flights varied

Mach number and altitude as well as power setting. Langley analyzed
the acoustics data while Dryden provided the exhaust conditions. The

results were correlated with small scale cold jet test data and are
presented in the references.

12



Self-Repairing Flight Control System (SRFCS)

NASA Dryden, in conjunction with the USAF, MDA, GE and other

contractors, flew a self-repairing flight control system on the NASA F-15.

The system, shown below, used a Kalman filter for fault detection and

isolation for locked and floating surfaces and partial surface loss. Upon

detecting a failure, the control laws were reconfigured to use the

remaining surfaces. The pilot was provided with an alert on his HUD,

along with an indication of the remaining maneuver capability after the

reconfiguration. There was also an on-board expert system for

maintenance diagnostics, which fed into the ground diagnostics capability.

Most of this system was installed in the on-board general-purpose Rolm
Hawk research computer. Simulated failures could be introduced into the

system through pilot commands.

The SRFCS was flown in a 25 flight program beginning in late 1989. Forty-

three hours of data was accumulated, and quality data was excellent. All

of the reconfiguration tests were successful. Most of the induced failures
were detected, although some of the partial surface failures were not

correctly identified. The flying qualities in the reconfigured system were

generally good except for fine tracking. Most impressive was the lack of
any false alarms.

F-15 Self-Repairing Flight Control System

835
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Performance-Seeking Control (PSC)

After the success of the ADECS tests, which was a schedule-based

optimization of a single parameter (EPR) for an average engine, it was desired

to perform a more sophisticated optimization. The Performance-Seeking

Control (PSC) project selected a model-based approach, and performed an

adaptive optimization of the propulsion system parameters on the F-15.

McDonnell Douglas and Pratt and Whitney assisted NASA in developing and
testing the PSC system. Several modes were implemented in the on-board

research computer, including maximum thrust, minimum fuel flow at constant

thrust, minimum temperature at constant thrust, and minimum supersonic
thrust for rapid supersonic deceleration.

In the flight evaluation, the PSC system was evaluated on the F100 EMD

engines on the F-15. Significant performance improvements were
demonstrated. Thrust improvements and constant thrust temperature

reductions and fuel flow reductions were determined, and compared to

predictions. Various levels of engine degradation were also tested. Intentional

engine stalls were conducted to validate the stability audit procedures.
Typical results for an altitude of 30,000 ft. showed increases of 10 to 14

percent in thrust at intermediate power. Fuel flow reductions of 7 to 17 percent
were obtained in the afterburning range with thrust held constant. These

engine performance improvements resulted in airplane performance

improvements (rate of chmb, specific excess power) of 10 to 25 percent. The
PCA project is presented in later papers

835
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Propulsion Controlled Aircraft (PCA)

As a result of several accidents in which all or major parts of the flight

control system was lost, NASA Dryden investigated the capability for a

"Propulsion Controlled Aircraft" (PCA), using only engine thrust for flight
control.

Initial flight studies with the pilot manually controlling the throttles and all

flight controls locked in the NASA F-15 showed that it was possible to maintain

gross control. For instance, a climb could be initiated by adding an equal

amount of power to both engines. Bank control could be achieved by adding

power to one engine and reducing power to the opposite engine. Using these
techniques, altitude could be maintained within a few hundred feet and

heading to within a few degrees. These same flights showed that it was
extremely difficult to land on a runway. This was due to the small control

forces and moments of engine thrust, difficulty in controlling the phugoid

oscillations, and difficulty in compensating for the slow engine response.
Studies in flight simulators at Dryden and at McDonnell Douglas were able to

duplicate the flight results. These simulators also established the feasibility of

a PCA mode, shown below, using feedback of parameters such as flight path

angle and bank angle to augment the throttle control capability and to stabilize

the airplane.
The NASA F-15 was an ideal testbed airplane for this research. It

incorporated digital engine controls, digital flight controls, had a general-

purpose computer and data bus architecture that permitted these digital

systems to communicate with each other. The only equipment added to the
airplane was a control panel containing 2 thumbwheels, one for flightpath

command, and the other for bank angle command. Later papers will describe

the design, development, and flight test results.
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F-15 ACTIVE Research Airplane

The integrated controls flight research program from the HIDEC

airplane will be continued on the F-15 ACTIVE (Advanced Control

Technology for Integrated VEhicles) airplane. This F-15 airplane was

transferred to NASA following the USAF STOL/Maneuver Technology

Demonstrator program. Features are shown below. The airplane has

independently actuated canards, a quad redundant digital flight control

system, an advanced (F-15E) cockpit, F100-PW-229 engines with improved

DEECs, and will be equipped with Pratt and Whitney axisymmetric thrust

vectoring nozzles. The research computer will be transferred from the

HIDEC airplane, as will the digital inlet control system. This program is

discussed in the ACTIVE Plans paper.

F-15 ACTIVE Research Airplane
F100-PW-229
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PSC Session Information

A model-based, adaptive control algorithm called Performance Seeking

Control (PSC) has been flight tested on an F-15 aircraft. The PSC was

developed to optimize aircraft propulsion system performance during steady-

state engine operation. The multimode algorithm minimizes fuel

consumption at cruise conditions; maximizes excess thrust (thrust minus

drag) during aircraft accelerations; extends engine life by decreasing Fan

Turbine Inlet Temperature (FTIT) during cruise or accelerations; and reduces

supersonic deceleration time by minimizing excess thrust. On-board models

of the inlet, engine, and nozzle are optimized to compute a set of control

trims, which are then applied as increments to the nominal engine and inlet

control schedules. The on-board engine model is continuously updated to

match the operating characteristics of the actual engine cycle through the use
of a Kalman filter, which accounts for unmodeled effects. The PSC algorithm

has been flight demonstrated on the NASA F-15 HIDEC test aircraft. This

session includes papers which present the key elements of the PSC algorithm,

its implementation and integration with the aircraft, and summarizes the

flight test results.

Agenda

John S. Orme, "Performance Seeking Control Program Overview"

Mark Bushman, Steven G. Nobbs, "F-15 Propulsion System"

Steven G. Nobbs, "PSC Algorithm Description"

Steven G. Nobbs, "PSC Implementation and Integration"

John S. Orme, Steven G. Nobbs, "Minimum Fuel Mode Evaluation"

John S. Orme, Steven G. Nobbs, "Minimum Fan Turbine Inlet Temperature
Mode Evaluation"

John S. Orme, Steven G. Nobbs, "Maximum Thrust Mode Evaluation"

Timothy R. Conners, Steven G. Nobbs, John S. Orme, "Rapid Deceleration
Mode Evaluation"

Timothy R. Conners, Steven G. Nobbs, "Thrust Stand Test"

Gerard Schkolnik, "Performance Seeking Control Excitation Mode"

Timothy R. Conners, "PSC Asymmetric Thrust Alleviation Mode"
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